Reduced diophantine quadruples with the binary recurrence G n = AG n − 1 − G n − 2
نویسندگان
چکیده
Given a positive integer A 6= 2. In this paper, we show that there do not exist two positive integer pairs {a, b} 6= {c, d} such that the values of ac+ 1, ad+ 1 and bc+ 1, bd+ 1 are the terms of the sequence {Gn}n≥0 which satisfies the recurrence relation Gn = AGn−1 − Gn−2 with the initial values G0 = 0, G1 = 1.
منابع مشابه
Diophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملOn the Exceptional Set in the Problem of Diophantus and Davenport
The Greek mathematician Diophantus of Alexandria noted that the numbers x, x + 2, 4x + 4 and 9x + 6, where x = 1 16 , have the following property: the product of any two of them increased by 1 is a square of a rational number (see [4]). Fermat first found a set of four positive integers with the above property, and it was {1, 3, 8, 120}. Later, Davenport and Baker [3] showed that if d is a posi...
متن کاملAdjugates of Diophantine Quadruples
Philip Gibbs Diophantine m-tuples with property D(n), for n an integer, are sets of m positive integers such that the product of any two of them plus n is a square. Triples and quadruples with this property can be classed as regular or irregular according to whether they satisfy certain polynomial identities. Given any such m-tuple, a symmetric integer matrix can be formed with the elements of ...
متن کاملA problem of Diophantus and Dickson’s conjecture
A Diophantine m-tuple with the property D(n), where n is an integer, is defined as a set of m positive integers with the property that the product of its any two distinct elements increased by n is a perfect square. It is known that if n is of the form 4k + 2, then there does not exist a Diophantine quadruple with the property D(n). The author has formerly proved that if n is not of the form 4k...
متن کاملA Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers
The balancing numbers are natural numbers n satisfying the Diophantine equation 1 + 2 + 3 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r); r is the balancer corresponding to the balancing number n.The n balancing number is denoted by Bn and the sequence {Bn} ∞ n=1 satisfies the recurrence relation Bn+1 = 6Bn−Bn−1. The balancing numbers posses some curious properties, some like Fibonacci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015